### КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АБАЯ



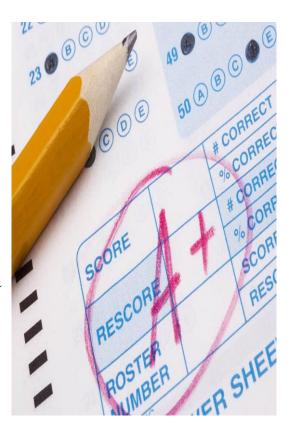
Факультет Педагогики и психологии Кафедра начального образования

# Классическая теория и методики конструирования тестов

Дисциплина: «Технология оценивания в начальном образовании»



Основные этапы конструирования теста


- 1.Определение цели тестирования, выбор теста и подхода к его созданию.
- 2. Концептуальный выбор конструкта (переменной измерения).
- 3. Анализ содержания учебной дисциплины и планирование содержания теста, априорный выбор длины теста и времени его вы полнения, разработка спецификации теста.
- 4. Определение структуры теста, форм заданий и стратегии их расположения в тесте.
- 5. Создание предтестовых заданий.
- 6. Отбор заданий в тест и их ранжирование согласно выбранной стратегии предъявления на основании априорных авторских оценок трудности заданий.
- 7. Экспертиза формы предтестовых заданий и содержания теста.
- 8. Коррекция заданий и теста по результатам экспертизы.
- 9. Разработка методики апробационного тестирования, инструкций для учеников и преподавателей, проводящих апробацию теста.





Основные этапы конструирования теста

- 10. Формирование репрезентативной выборки апробации.
- 11. Проведение апробационного тестирования.
- 12. Проверка результатов выполнения теста (автоматизированная или ручная), подготовка эмпирических данных тестирования к виду, удобному для обработки и проведения анализа.
- 13. Статистическая обработка результатов выполнения теста (автоматизированная с помощью специального программного обеспечения).
- 14. Анализ и интерпретация результатов обработки в целях улучшения качества теста. Проверка соответствия характеристик теста научно обоснованным критериям качества.
- 15. Коррекция содержания и формы заданий на основании данных предыдущего этапа. Чистка теста и добавление новых заданий для оптимизации диапазона значений параметра трудности и улучшения системообразующих свойств заданий теста. Оптимизация длины те ста и времени его выполнения на основании статистических оценок характеристик теста. Оптимизация порядка расположения заданий в тесте.
- 16. Повторение этапа апробации для выполнения очередных шагов по повышению качества теста.
- 17. Интерпретация данных обработки, установление норм теста и создание шкалы для оценки результатов испытуемых.





Основное предположение классической теории тестов.

Предположение о существовании истинного балла (True Score) является основополагающим в классической теории тестов, наряду с терминами «сырой балл» и «Наблюдаемый балл» оно широко используется в процессе разработки тестов [28, 47, 68].

Среди различного рода ошибок при тестировании можно выделить два типа:



систематические

случайные





## Матрица наблюдаемых результатов выполнения теста

| Испытуемые                                                    | Зздашы <i>1јп</i>                                 | Индивидуальный<br>балл (x;)                        |
|---------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| 1<br><br>i                                                    | Хи= {                                             | $x_i = "Lx_{,j}$ $\int_{J=I}^{J=I} x_{,j} dx_{,j}$ |
| Количество правильных<br>ответов на задания (R <sub>i</sub> ) | $R_1 = \overset{\sim}{\underset{i=1}{1}} x_{i,1}$ | ${}^{N}_{1} = {}^{n}_{1}$                          |



## Матрица результатов тестирования

| Номера ис-<br>пытуемых і                             |   | Индивиду- |   |   |   |   |   |   |   |    |                                           |
|------------------------------------------------------|---|-----------|---|---|---|---|---|---|---|----|-------------------------------------------|
|                                                      | ī | 2         | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | альные балль<br>(множество<br><i>X;</i> ) |
| 1                                                    | 1 | 1         | 1 | 1 | 1 | 1 | О | 0 | 0 | 0  | 6                                         |
| 2                                                    | 1 | 1         | 0 | 0 | О | 0 | 0 | 0 | 0 | 0  | 2                                         |
| 3                                                    | О | 0         | 0 | 0 | О | 0 | 0 | 1 | 0 | 0  | 1                                         |
| 4                                                    | 1 | 1         | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 9                                         |
| 5                                                    | 1 | 0         | 1 | О | 1 | 1 | 0 | О | 0 | О  | 4                                         |
| 6                                                    | 1 | 1         | 1 | 0 | О | 0 | 0 | 1 | 0 | 0  | 4                                         |
| 7                                                    | 1 | 1         | 1 | 1 | О | 1 | 0 | 0 | 0 | 0  | 5                                         |
| 8                                                    | 1 | 1         | 1 | 1 | О | О | О | 0 | О | 0  | 4                                         |
| 9                                                    | 1 | 1         | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0  | 9                                         |
| 10                                                   | 1 | 1         | 1 | 1 | 1 | О | 1 | О | О | 0  | 6                                         |
| Число пра-<br>вильных от-<br>ветов (мно-<br>жество ) | 9 | 8         | 7 | 6 | 5 | 5 | 3 | 4 | 2 | 1  | 50                                        |



## Матрица результатов тестирования после удаления

| Номера ис-<br>пытуемых і |   | Номера ззданийј |   |   |   |   |   |   |   |    |    |  |
|--------------------------|---|-----------------|---|---|---|---|---|---|---|----|----|--|
|                          | 1 | 2               | 3 | 4 | 5 | 6 | 8 | 7 | 9 | 10 | X1 |  |
| 3                        | 0 | 0               | 0 | 0 | О | О | 1 | 0 | 0 | 0  | 1  |  |
| 2                        | 1 | 1               | О | 0 | 0 | 0 | 0 | 0 | О | О  | 2  |  |
| 5                        | 1 | 0               | 1 | 0 | 1 | 1 | О | О | О | 0  | 4  |  |
| 6                        | 1 | 1               | 1 | 0 | 0 | 0 | 1 | 0 | 0 | О  | 4  |  |
| 8                        | 1 | 1               | 1 | 1 | 0 | О | 0 | 0 | 0 | 0  | 4  |  |
| 7                        | 1 | 1               | 1 | 1 | 0 | 1 | 0 | 0 | 0 | О  | 5  |  |
| 1                        | 1 | 1               | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0  | 6  |  |
| 10                       | 1 | 1               | 1 | 1 | 1 | 0 | 0 | 1 | О | 0  | 6  |  |
| 9                        | 1 | 1               | 1 | 1 | 1 | 1 | 1 | 1 | 1 | О  | 9  |  |
| 4                        | 1 | 1               | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 9  |  |
| $R_i$                    | 9 | 8               | 7 | 6 | 5 | 5 | 4 | 3 | 2 | 1  | 50 |  |



Распределение сгруппированных частот результатов учащихся

| Интервал баллов | Частота |
|-----------------|---------|
| 1-3             | 2       |
| 4-6             | 6       |
| 7-9             | 2       |



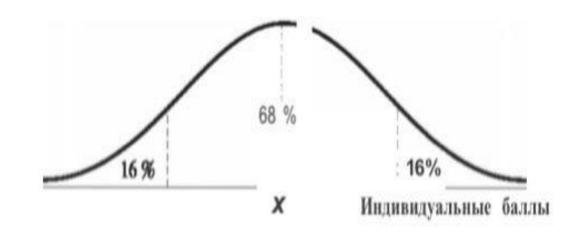
Мода - это такое значение, которое встречается наиболее часто среди результатов выполнения теста.

Например, для данных матрицы, представленной в табл. 10, модой является балл «4», потому что он встречается чаще (три раза) любого другого значения балла.





$$X = X_1 + X_2 + \dots + X_N$$


$$N$$

$$\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N}.$$



Нормальная кривая - изобретение математиков в сглаженном, идеальном виде описывает реальный полигон частот. На практике никогда не была и не будет получена совокупность данных, распределенных точно по нормальному закону, просто иногда полезно, допуская определенную ошибку, утверждать, что распределение эмпирических данных близко к нормальной кривой.

Нормальное распределение унимодально и симметрично, т.е. половина результатов, расположенная ниже моды, в точности совпадает с другой половиной, расположенной выше, а мода и среднее значение равны.



Нормальная кривая распределения индивидуальных баллов



Размах измеряет на шкале расстояние, в пределах которого изменяются все значения показателя в распределении. Например, для распределения индивидуальных баллов, представленных в табл. 10, размах равен 9 - 1 = 8. Вариационный размах < легко вычисляется, но при характеристике распределения баллов по тесту используется крайне редко. Во-первых, размах является весьма приближенным показателем, так как не зависит от степени изменчивости промежуточных значений, расположенных между крайними значениями в распределении баллов по тесту. Во-вторых, крайние значения индивидуальных баллов, как правило, ненадежны, поскольку содержат в себе значительную ошибку измерения. В этой связи более удачной мерой изменчивости считается дисперсия.





Таблица 15. Пример значений коэффициента корреляции между заданиями

|       | 1      | 2      | 3      | 4      | 5      | 6      | 8      | 7      | 9       | 10     |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|
| 1     | 1,0000 | 0,6667 | 0,5092 | 0,4082 | 0,3333 | 0,3333 | 0,4082 | 0,2182 | 0,1667  | 0,1111 |
| 2     | 0,6667 | 1,0000 | 0,2182 | 0,6124 | 0,0000 | 0,0000 | 0,1021 | 0,3273 | 0 ,2500 | 0,1667 |
| 3     | 0,5092 | 0,2182 | 1,0000 | 0,3563 | 0,2182 | 0,2182 | 0,3563 | 00,476 | 0,2182  | 0,5092 |
| 4     | 0,4082 | 0,6124 | 0,3563 | 1,0000 | 0,4082 | 0,4082 | 0,1667 | 0,5345 | 0 ,4082 | 0,2722 |
| 5     | 0,3333 | 0,0000 | 0,2182 | 0,4082 | 1,0000 | 0,6000 | 0,000  | 0,6547 | 0,5000  | 0,3333 |
| 6     | 0,3333 | 0,0000 | 0,2182 | 0,4082 | 0,6000 | 1,0000 | 0,0000 | 0,2182 | 0,5000  | 0,3333 |
| 8     | 0,4082 | 0,1021 | 0,3563 | 0,1667 | 0,0000 | 0,0000 | 1,0000 | 0,3563 | 0,6124  | 0,4082 |
| 7     | 0,2182 | 0,3273 | 00,476 | 0,5345 | 0,6547 | 0,2182 | 0,3563 | 1,0000 | 0,7638  | 0,5092 |
| 9     | 0,1667 | 0,2500 | 0,2182 | 0,4082 | 0,5000 | 0,5000 | 0,6124 | 0,7638 | 1,0000  | 0,6667 |
| 10    | 0,1111 | 0,1667 | 0,5092 | 0,2722 | 0,3333 | 0,3333 | 0,4082 | 0,5092 | 0,6667  | 1,0000 |
| Суммы | 3,3385 | 3,1392 | 1,3888 | 4,2417 | 4,0478 | 3,6114 | 1,3436 | 4,5346 | 4,6495  | 3,2915 |

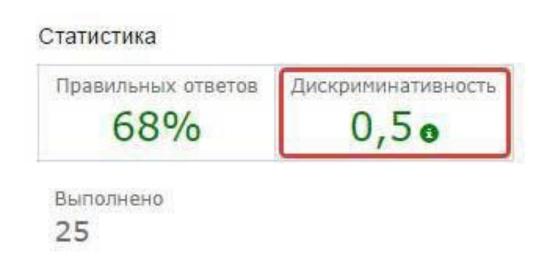


Бисериальный коэффициент корреляции используется в том случае, когда один набор значений распределения задается в дихотомической шкале, а другой - в интервальной. Под эту ситуацию подпадает подсчет корреляции между результатами выполнения каждого задания (дихотомическая шкала) и суммой баллов испытуемых по заданиям теста (интервальная или квазиинтервальная шкала). С помощью подсчета значений бисериального коэффициента корреляции оценивается валидность, иногда называемая показателем дифференцирующей способности (цискриминативности) заданий теста.

$$r_{pb} = \frac{\overline{y}_1 - \overline{y}_0}{\sigma_y} \cdot \sqrt{\frac{n_1 \cdot n_0}{n(n-1)}},$$



Оценка трудности тестовых заданий в классической теории тестов осуществляется по формуле:


Где p1 - доля правильных ответов на j-е задание; R1- количество учеников, выполнивших j-е задание верно; N - число учеников в тестируемой группе;} - номер задания теста (j= 1, 2, ..., п). Трудность задания нередко выражают в процентах. Для этого оценку, полученную по формуле, умножают на 100 %.





Дискриминативностью (disaiminatory powa) называется способность задания дифференцировать учеников на лучших и худших.

Высокая дискриминативность - важная характеристика удачного тестового задания, она определяет меру валидности задания, его адекватность целям создания теста.





#### Этические нормы в тестировании:

#### 1.Справедливость и равенство:

Этические нормы требуют, чтобы тесты были справедливыми и равноправными для всех, независимо от их культурных, социальных и этнических особенностей. Тесты не должны содержать предвзятость и дискриминацию.

## 2.Прозрачность и открытость:

Этические нормы требуют, чтобы тесты были разработаны и проведены в открытом и прозрачном процессе. Участники тестирования должны быть информированы о целях, условиях и оценочных процедурах.





Этические нормы в тестировании:

- 3. Конфиденциальность и приватность: Защита данных и личной информации участников тестирования важнейший этический аспект. Результаты тестов должны быть доступны только тем лицам, для которых они предназначены.
- 4.Информированный согласие: Перед проведением тестов участники должны давать информированное согласие на участие и быть осведомленными о возможных последствиях результатов тестирования.





#### Этические нормы в тестировании:

5. Честность и честные практики:

Этические нормы требуют от исследователей и тестировщиков соблюдать честность во всех аспектах тестирования, включая сбор данных, анализ и интерпретацию результатов.

6.Обеспечение безопасности:

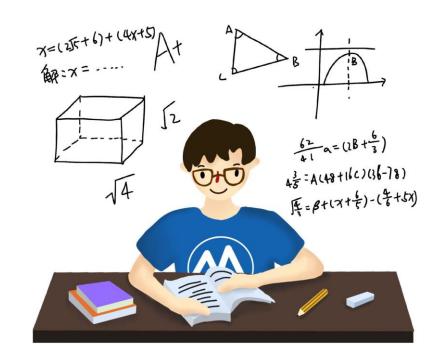
При проведении физических тестов, например, в медицинских областях, важно обеспечить безопасность участников и минимизировать риски для их здоровья. 7.Учет потребностей специальных групп: Этические нормы также требуют учета потребностей людей с ограниченными возможностями и адаптацию тестов для них.





- 1.Первые тесты появились более ста лет назад: Первый массовый тест IQ был разработан Альфредом Бине в 1905 году. Это стало отправной точкой для развития тестового тестирования.
- 2.Создание "Сатурн-5" и тест на уровень IQ: Для набора инженеров, работавших над проектом "Аполлон" и созданием ракеты "Сатурн-5", был проведен тест на интеллект. Он показал, что многие из них имели выдающиеся умственные способности.






- 3. Коэффициент корреляции Гуттмана: Янси Гуттман, один из основателей классической теории тестов, внес значительный вклад, разработав коэффициент корреляции Гуттмана, который используется для изучения связи между результатами разных тестов.
- 4.Метод Гуттмана для создания шкал: Янси Гуттман также разработал метод создания шкал, при котором элементы шкалы упорядочиваются от самых легких к самым сложным, и каждый элемент предполагает знание всех предыдущих.





- 5. Метод дихотомических вопросов: Этот метод, используемый при создании тестов, предполагает, что на каждый вопрос можно ответить либо "да", либо "нет". Он часто применяется в тестировании знаний.
- 6. Критика классической теории: Несмотря на широкое использование, классическая теория тестов получила критику за ограниченность в объяснении сложных многомерных явлений, что привело к развитию более современных методов, таких как теория ответов на элементы.



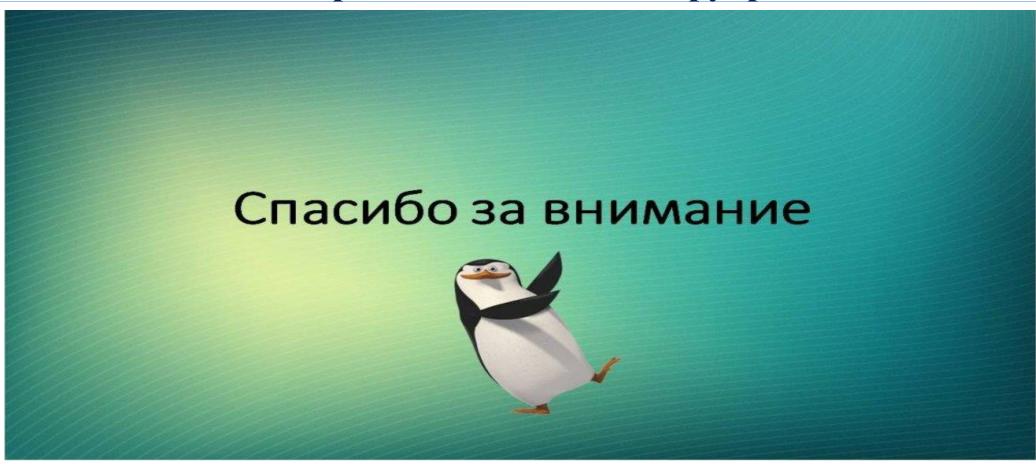


- 7. Эволюция онлайн-тестирования: С развитием интернета и компьютерных технологий, многие тесты перешли в онлайн-формат, что позволяет более гибко проводить и администрировать тестирование.
- 8.Значение в образовании и бизнесе: Тесты играют важную роль в сферах образования и бизнеса, помогая принимать решения о приеме на работу, обучении и карьерном развитии.





- 9.Использование в психологических исследованиях: Тесты часто используются для изучения психологических явлений, таких как личностные черты, интеллект, стрессовая устойчивость и многие другие аспекты психологии.
- 10. Сложности при создании валидных тестов: Создание валидных тестов требует глубокого знания предметной области, статистических методов и психометрики, что делает эту область исследования и разработки весьма сложной и интересной.






#### ЗАКЛЮЧЕНИЕ:

Классическая теория и методики конструирования тестов основаны на надежности, валидности и справедливости. Они включают в себя разработку вопросов с единственным ответом, статистический анализ и использование теории надежности. Учитывать контекст и цель тестов важно для их эффективности и справедливости.



